JSONly Viewer

Professional JSON validation, formatting, and visualization for developers

JSON Conversion FAQ: Complete Format Conversion Guide

Expert answers to JSON conversion questions • Updated March 2025

🚀 TL;DR - Quick Answers

JSON to XML: Use online converters - maintains structure, adds XML tags
JSON to CSV: Flattens nested objects into tabular format for spreadsheets
JSON to Excel: Use Power Query or convert to CSV first, then import
Best Tools: Online converters, programming libraries, Excel Power Query

JSON to XML Conversion

Converting JSON to XML online is straightforward with the right tools:

Step-by-Step Process

  1. Choose a converter: Use JsonViewer.tools, ConvertJSON.com, or similar
  2. Input your JSON: Paste, upload file, or provide URL
  3. Configure options: Set root element name, attributes handling
  4. Convert and download: Get your XML file instantly

Top JSON to XML Converters

JsonViewer.tools
  • Clean interface
  • Instant conversion
  • Proper XML formatting
  • Error handling
Code Beautify
  • Simple conversion
  • File upload support
  • Download options
  • Multiple formats
ConvertJSON
  • Specialized tool
  • Advanced options
  • Batch processing
  • API access

Conversion Example

JSON Input:
{
  "user": {
    "name": "John Doe",
    "age": 30,
    "email": "john@example.com",
    "hobbies": ["reading", "coding"]
  }
}
XML Output:
<?xml version="1.0" encoding="UTF-8"?>
<root>
  <user>
    <name>John Doe</name>
    <age>30</age>
    <email>john@example.com</email>
    <hobbies>
      <item>reading</item>
      <item>coding</item>
    </hobbies>
  </user>
</root>

JSON and XML are both data interchange formats, but they have significant differences:

Structure and Syntax

Aspect JSON XML
Syntax Lightweight, key-value pairs Tag-based markup language
Data Types String, Number, Boolean, Array, Object, null All data as text (with type attributes)
Attributes Not supported Supported (tag attributes)
Namespaces Not supported Fully supported
Comments Not allowed Supported
File Size Smaller (less verbose) Larger (more verbose)

Advantages and Use Cases

JSON Advantages
  • Lightweight: Less bandwidth usage
  • Native JavaScript support: Direct parsing
  • Human readable: Easy to read and write
  • Simple structure: Quick to learn
  • Fast parsing: Better performance
Best for:
  • Web APIs and REST services
  • Configuration files
  • Data exchange between applications
  • Mobile applications
XML Advantages
  • Extensible: Custom tags and attributes
  • Schema validation: XSD support
  • Namespaces: Avoid naming conflicts
  • Metadata support: Rich attribute system
  • Document structure: Better for documents
Best for:
  • Document markup (HTML-like)
  • Enterprise systems (SOAP)
  • Configuration with validation
  • Data with complex relationships

Example Comparison

Same Data in JSON:
{
  "book": {
    "title": "JSON Guide",
    "author": "John Smith",
    "isbn": "978-1234567890",
    "price": 29.99,
    "available": true,
    "categories": ["programming", "web"]
  }
}
Same Data in XML:
<?xml version="1.0" encoding="UTF-8"?>
<book isbn="978-1234567890" available="true">
  <title>JSON Guide</title>
  <author>John Smith</author>
  <price currency="USD">29.99</price>
  <categories>
    <category>programming</category>
    <category>web</category>
  </categories>
</book>

XML can usually be converted to JSON, but some XML features don't have direct JSON equivalents:

Conversion Challenges

1. XML Attributes

XML attributes need special handling in JSON:

XML:
<user id="123" active="true">John</user>
JSON (Common approach):
{
  "user": {
    "@id": "123",
    "@active": "true",
    "#text": "John"
  }
}
2. Mixed Content

XML with text and elements mixed:

XML:
<p>Hello <strong>world</strong> today!</p>
JSON (Complex):
{
  "p": [
    "Hello ",
    {"strong": "world"},
    " today!"
  ]
}
3. Namespaces

XML namespaces require special JSON representation:

XML:
<book xmlns:pub="http://publisher.com">
  <pub:publisher>Tech Books</pub:publisher>
</book>
JSON:
{
  "book": {
    "@xmlns:pub": "http://publisher.com",
    "pub:publisher": "Tech Books"
  }
}

Conversion Strategies

  • Attribute prefixes: Use @ for attributes (@id, @class)
  • Text content: Use #text for mixed content
  • Array handling: Single elements may become arrays
  • Data type preservation: All XML data becomes strings

Best Practices

  • Choose conversion tools that handle your specific XML features
  • Test with sample data before bulk conversion
  • Consider data loss in attributes and namespaces
  • Validate converted JSON structure

JSON to CSV/Excel Conversion

Converting JSON to CSV flattens hierarchical data into tabular format:

Online Conversion Process

  1. Select a converter: Use JsonViewer.tools, ConvertCSV, or similar
  2. Input JSON data: Paste or upload your JSON file
  3. Configure flattening: Choose how to handle nested objects
  4. Download CSV: Get ready-to-use CSV file

Flattening Strategies

1. Dot Notation

Nested properties become dot-separated columns:

JSON:
{
  "user": {"name": "John", "address": {"city": "NYC"}}
}
CSV Columns:
user.name, user.address.city
John, NYC
2. Array Expansion

Arrays create multiple rows or columns:

JSON:
{
  "name": "John",
  "hobbies": ["reading", "coding"]
}
CSV (Multiple Rows):
name, hobby
John, reading
John, coding
3. JSON String Preservation

Complex objects remain as JSON strings:

JSON:
{
  "name": "John",
  "metadata": {"tags": ["a", "b"], "score": 95}
}
CSV:
name, metadata
John, "{""tags"":[""a"",""b""],""score"":95}"

Best Online JSON to CSV Tools

Tool Features Best For
JsonViewer.tools Clean UI, instant conversion, proper flattening General use, simple JSON
ConvertCSV Advanced options, custom delimiters, large files Complex JSON, bulk conversion
JSON-CSV API access, batch processing, custom mapping Automated workflows

There are several ways to convert JSON to Excel format:

Method 1: Direct Online Conversion

  1. Use online converters like JsonViewer.tools
  2. Upload or paste your JSON data
  3. Select Excel (.xlsx) as output format
  4. Download the converted Excel file

Method 2: JSON → CSV → Excel

  1. Convert JSON to CSV first
  2. Open Excel
  3. Import CSV file (Data → From Text/CSV)
  4. Configure column types and formatting

Method 3: Excel Power Query

Excel's built-in feature for JSON import:

  1. Open Excel
  2. Go to Data → Get Data → From File → From JSON
  3. Select your JSON file
  4. Use Power Query Editor to transform data
  5. Load data into worksheet
Power Query Advantages:
  • Native Excel feature
  • Powerful data transformation
  • Handles complex nested structures
  • Refreshable data connections

Handling Complex JSON in Excel

Nested Objects:

Power Query can expand nested objects into separate columns automatically.

Arrays:

Arrays can be expanded into multiple rows or kept as comma-separated values.

Data Types:

Excel can auto-detect and convert data types (numbers, dates, text).

Conversion Example

JSON Input:
[
  {
    "id": 1,
    "name": "John Doe",
    "email": "john@example.com",
    "orders": [
      {"date": "2025-01-15", "amount": 150.00},
      {"date": "2025-02-10", "amount": 89.99}
    ]
  },
  {
    "id": 2,
    "name": "Jane Smith", 
    "email": "jane@example.com",
    "orders": [
      {"date": "2025-01-20", "amount": 200.00}
    ]
  }
]
Excel Output (Flattened):
id name email orders.date orders.amount
1 John Doe john@example.com 2025-01-15 150.00
1 John Doe john@example.com 2025-02-10 89.99
2 Jane Smith jane@example.com 2025-01-20 200.00

Yes, Excel can open JSON files using several methods:

Method 1: Power Query (Recommended)

Steps:
  1. Open Excel
  2. Navigate to Data tab → Get Data → From File → From JSON
  3. Browse and select your JSON file
  4. Power Query Editor opens automatically
  5. Transform data as needed
  6. Click Close & Load to import
Power Query Features:
  • Automatic structure detection
  • Data type conversion
  • Column expansion options
  • Filter and transform capabilities

Method 2: Direct File Opening

Excel 365 and newer versions can open JSON files directly:

  1. Use File → Open
  2. Select JSON file
  3. Excel automatically launches Power Query
  4. Follow the transformation wizard

Method 3: Import from Web

For JSON data from URLs:

  1. Go to Data → From Web
  2. Enter JSON API URL
  3. Excel fetches and parses JSON
  4. Transform in Power Query Editor

Excel Versions Compatibility

Excel Version JSON Support Method
Excel 365 Full native support Power Query built-in
Excel 2019/2021 Good support Power Query available
Excel 2016 Limited support Power Query add-in required
Excel 2013 or older No native support Convert to CSV first

Common Issues and Solutions

Large JSON Files:

Excel has row limits (1M+ rows). Consider splitting large files or using database imports.

Complex Nesting:

Deep nesting may require multiple expand operations in Power Query.

Data Types:

Manually set column types in Power Query for better data handling.

Advanced JSON Conversion

YAML is a human-readable data serialization standard, often used for configuration files:

JSON to YAML Conversion Process

  1. Use online converters like JsonViewer.tools or YAML converters
  2. Paste your JSON data
  3. Get YAML output with proper indentation
  4. Copy or download the YAML file

Conversion Example

JSON Input:
{
  "database": {
    "host": "localhost",
    "port": 5432,
    "name": "myapp",
    "credentials": {
      "username": "admin",
      "password": "secret"
    },
    "options": {
      "ssl": true,
      "timeout": 30,
      "pool_size": 10
    }
  },
  "features": ["auth", "logging", "caching"]
}
YAML Output:
database:
  host: localhost
  port: 5432
  name: myapp
  credentials:
    username: admin
    password: secret
  options:
    ssl: true
    timeout: 30
    pool_size: 10
features:
  - auth
  - logging
  - caching

Key Differences: JSON vs YAML

Feature JSON YAML
Syntax Brackets and quotes Indentation-based
Comments Not supported Supported (#)
Multiline strings Escaped characters Native support (| and >)
Human readable Good Excellent
File size Smaller Larger

When to Use YAML

  • Configuration files: Docker Compose, Kubernetes, CI/CD
  • Documentation: More readable than JSON
  • Data exchange: When human editing is needed
  • Templates: Infrastructure as Code

JSON can be converted to and from many different data formats:

Common Format Conversions

Structured Data Formats
JSON ↔ XML

Hierarchical data exchange

  • Web services
  • Configuration files
  • Data migration
JSON ↔ YAML

Human-readable configuration

  • DevOps configs
  • Documentation
  • CI/CD pipelines
JSON ↔ TOML

Configuration files

  • Package managers
  • Project configs
  • Settings files
Tabular Data Formats
JSON ↔ CSV

Spreadsheet compatibility

  • Data analysis
  • Excel import/export
  • Database loading
JSON ↔ TSV

Tab-separated values

  • Database imports
  • Data processing
  • Analytics tools
JSON ↔ Excel

Spreadsheet format

  • Business reports
  • Data visualization
  • Financial analysis
Binary/Specialized Formats
JSON ↔ Protocol Buffers

Efficient serialization

  • API communication
  • Microservices
  • High-performance apps
JSON ↔ MessagePack

Binary JSON-like format

  • Network protocols
  • Data storage
  • Real-time systems
JSON ↔ Avro

Schema evolution

  • Big data processing
  • Data pipelines
  • Apache ecosystem

Conversion Tools by Category

Online Converters
  • JsonViewer.tools: JSON, XML, CSV, YAML
  • ConvertJSON.com: Multiple format support
  • Online-Convert.com: Various data formats
Programming Libraries
  • Python: json, yaml, csv, pandas libraries
  • JavaScript: JSON.parse/stringify, js-yaml, csv-parser
  • Java: Jackson, Gson, SnakeYAML
Command Line Tools
  • jq: JSON processing and conversion
  • yq: YAML processing (similar to jq)
  • csvkit: CSV manipulation and conversion

🎯 Key Takeaways

Format Selection

Choose the right format: JSON for APIs, XML for documents, CSV for spreadsheets, YAML for configs.

Conversion Tools

Use online converters for quick tasks, programming libraries for automation, Excel Power Query for business use.

Data Structure

Understand how nested JSON translates to flat formats - some data relationships may be lost or transformed.

Validation

Always validate converted data to ensure accuracy and completeness after format transformation.